orthogonal latin squares造句
例句與造句
- A method of constructing mutually orthogonal latin square of order 4t
階正交拉丁方的構(gòu)造方法 - ( 1 ) state the appearance of block design and it ' s resolution . ( 2 ) formulate the history of ols ( orthogonal latin squares ) and show the role that euler ' s conjecture and macneish ' s conjecture on ols played in the progress of study on latin square . ( 3 ) state briefly the motivation that finite projective plan and finite field offer to the development of combinatorial design
( 1 )詳述了18世紀(jì)中期提出的區(qū)組設(shè)計(jì)問(wèn)題以及這些問(wèn)題出現(xiàn)的多種形式及解決方法; ( 2 )對(duì)組合設(shè)計(jì)中正交拉丁方的歷史予以闡述,分析了拉丁方問(wèn)題的研究中歐拉猜想和麥克奈希猜想的作用; ( 3 )簡(jiǎn)述了有限射影幾何及有限域在組合設(shè)計(jì)中的意義及其對(duì)組合設(shè)計(jì)理論發(fā)展的推動(dòng)作用。 - 3 g 一 g g abasi 叱 加 ical pp 訕 howthe qquasi ghgsical 毗 quasi sociological methodmo 止 secondlx we uthuther nalsze the nhrsical model on which he quasi pnsical and quasi sociological methods for solving s 肛 problembased considering a physical hypothesis on this model , we construct a counterexaxnple to showthatthe hypothesis is not eee ? howeve 二 itdoes notdamage the goodpractical effectof applpinp this phpsical model to solve s 盯 problem considering he existence of alsorithlnic region , which reflects that the quasi sociological method is very necessw for ass 吶 ng the high efficient of theent whole algori 燦 m therefore deepens our comprehension on the quasi physical and quasi sociological methods mird1x we wpl … 叫 nas 恤 ysi 陰 1md q 阻 si 500i 吶 i0alm 毗 cd 引 0 咖 we mathematical problem ofcom 恤 non oforthogonal tmles m successfully es 恤 fish a physicalopttrizatbo model for sotring saturated o 汕 ogonal tables , whwh ws provedto be correctintheo0 we thi 冰 。 w goodpersonated s 咖 egies forjumping out of the t 呷 oflocal minimum using quasi sociological method based onthe physical model thus wegetthe wholequasi physicaland quasi sociological algorim forthe problem ofconswction ofs 咖 med orthogonal tables he experimental results showthatthephysical model ishighly efficientthanthe conflmng nlllllber mode ! based on me pure m 她 ematical 訕 kgfound 他 sucoes 訕 11y ? ? rk 咖 m 枷 ons 訕 卿 nal 郵 ie with 3 leve13 using th 叫 u 1 physical and quasi sociological algori 恤 we got some o 汕 ogonal t 勸 les ofl 。 , ( 3 ’ ‘ ) which are not isomorphic moreove 乙 some ofour results are also not isomorphic to oe results pearedb 山 e open rekrences we got lip to now lastlx for 讓 卜 ancie 口 戊 扯 d importantproblemsofconstfutfuction oflatin square and orthogonal latin squares ( most of
應(yīng)用此算法,我們成功地計(jì)算出難的三水平正交表本課題為國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展“九七三”規(guī)劃,國(guó)家“八六三”高技術(shù)發(fā)展計(jì)劃,高等學(xué)校博士學(xué)位點(diǎn)專項(xiàng)科研基金及中國(guó)科學(xué)院軟件研究所計(jì)算機(jī)科學(xué)開放研究實(shí)驗(yàn)室課題基金資助項(xiàng)目1g一gs第四,應(yīng)用擬物擬人方法嘗試求解古老而重要的拉丁方、正交拉丁方(它們事實(shí)上是正交表)問(wèn)題。我們結(jié)合這些問(wèn)題的特性,建立了新的物理模型,從理論上證明了這些物理模型的正確性,并設(shè)計(jì)出擬人化的“跳出局部極小值陷餅”的策略,得到了求解拉丁方、正交拉丁方的擬物擬人算法。實(shí)驗(yàn)表明, ”對(duì)某些問(wèn)題算法有好的效果。 - In this paper , relevant algorithm of the automatic producing test case will be discussed , furthermore , the simulate annealing genetic algorithm of automatic producing the case of combination of condition covering test , and the orthogonal latin squares method of the automatic producing the case of combination of input variant covering test are offered in the paper
本文討論了自動(dòng)生成測(cè)試數(shù)據(jù)的相關(guān)算法,并在此基礎(chǔ)上,給出了能自動(dòng)生成條件組合覆蓋測(cè)試數(shù)據(jù)的模擬退火遺傳算法以及可自動(dòng)生成輸入變量值組合覆蓋測(cè)試數(shù)據(jù)的正交拉丁方方法。 - It's difficult to find orthogonal latin squares in a sentence. 用orthogonal latin squares造句挺難的